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Abstract

The interaction between a pair of Bloch fronts forming a traveling domain in a bistable medium is studied. A parameter
range beyond the nonequilibrium Ising-Bloch bifurcation is found where traveling domains collapse. Only beyond a second
threshold the repulsive front interactions become strong enough to balance attractive interactions and asymmetries in front
speeds, and form stable traveling pulses. The analysis is carried out for the forced complex Ginzburg-Landau equation.
Similar qualitative behavior is found in the bistable FitzHugh-Nagumo model. © 1997 Published by Elsevier Science B.V.

Traveling waves far from equilibrium are often
formed when a uniform state is destabilized by a Hopf
bifurcation occurring at a finite wavenumber [1].
Traveling waves or pulses also form from parity
breaking bifurcations of stationary patterns [2]. A
related mechanism that has not received adequate
attention involves a parity breaking front bifurcation
in which a stationary front solution loses stability
to a pair of counter-propagating front solutions [3-
6]. This bifurcation, sometimes referred to as the
nonequilibrium Ising-Bloch (NIB) bifurcation, has
been found in chemical reactions [7,8] and in lig-
vid crystals [9,10]. Bistable systems, which do not
necessarily support stationary patterns, may exhibit
traveling pulses and waves beyond the NIB bifurca-
tion. Activator-inhibitor systems with nondiffusing
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inhibitors provide a good example. For fast inhibitor
kinetics initial domain patterns always coarse grain
and converge to a uniform state. For sufficiently slow
kinetics, and beyond the NIB bifurcation, traveling
pulses, periodic wave trains, and spiral waves appear.

Numerical studies of systems with a NIB bifurca-
tion indicate that traveling pulses do not appear im-
mediately at the front bifurcation point. Instead, there
is an intermediate parameter range where initial do-
mains may travel but eventually collapse. Only past a
second threshold parameter value do initial domains
converge to stable traveling pulses [5]. In this paper
we study the interactions between a pair of traveling
fronts in this intermediate parameter range. We find
that the balance of repulsive front interactions with at-
tractive interactions and an asymmetry between lead-
ing and trailing fronts gives this threshold parameter
value.

We choose to study the parametrically forced com-
plex Ginzburg-Landau (CGL) equation
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A= (p+iv)A+ (1 +ic)) A
— (1 +ic3)|AI*A + yA* + a, (1)

where A(x,t) is a complex field and »,¢;,c3 and y
are real parameters. The parameter o can be a com-
plex number, but since the final results we present
here do not depend on its imaginary part we assume a
is also real * . The CGL equation (y = @ = 0) is often
obtained as an envelope equation for an extended sys-
tem undergoing a Hopf bifurcation at zero wavenum-
ber [11]. Then, the variable A(x,t) describes weak
modulations of the homogeneous oscillations. The
terms « and yA* in (1) represent, respectively, the
effect of parametric forcing with equal and twice the
system’s natural oscillation frequency [12] 3.Eq. (1)
has been introduced recently in the context of liquid
crystals [13].

The parametric forcing term yA* breaks the phase
shift symmetry, A — Ae'®, of Eq. (1) and reduces
the one-parameter family of cw solutions of the CGL
equation, A = Aoe!*~HHP () < ¢ < 271, to two
pairs of stable—unstable solutions with fixed ¢ values,
arising in saddle-node bifurcations. Eq. (1) therefore
describes a bistable extended system of two stable uni-
form states that oscillate with different phases. The
second forcing term, a, breaks the parity symmetry
(A — —A) of these two states. The front solutions
we will be concerned with connect these two states at
x — Foc.

A simpler, gradient version of Eq. (1) is obtained
by omitting the linear and nonlinear dispersion terms,

Ar=pA+ Ay — |APA+7A* +a. (2)

A physical application of (2) is Rayleigh-Bénard con-
vection with periodic spatial modulation of the cell
height [14] or heating [15]. When @ = 0, Eq. (2)
has three types of stationary front solutions,

I(x;0)=0Ag tanh(%on), (3)

B.i(x;0) =oAptanh(kx) +iy/u — 3y sech(kx),
4)

4 The imaginary part of @ may contribute, however, to higher
order corrections not considered considered here.

5Eq. (1) is obtained assuming that the detuning » of the forcing
at the system’s natural frequency is exactly half the detuning of
the forcing at twice the natural frequency.
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Fig. 1. The nonequilibrium Ising-Bloch (NIB) bifurcation for
front solutions of Eq. (1). For v > v, there is a single stable
Ising front with zero speed (solid line). For y < . the Ising front
is unstable (dashed line) and a pair of stable counterpropagating
Bloch fronts appears (solid lines). Parameters: x = 1.0, » = 0.01,
ci=c3=a=00.

where Ap = /L + 7, k = /2y and o = %1 is the
front polarity which stems from the reflection symme-
try x — —x of Eqs. (2) and (1). The front solutions
I(x;0) and B4 (x; o) are equivalent to Néel (Ising)
and Bloch domain walls in ferromagnets with weak
anisotropy [4] and will be referred to as Ising and
Bloch fronts. The Ising front I(x; o) loses stability
as v is decreased past the critical value y, = u/3. At
that point the two Bloch fronts B4 (x; o) appear and
are stable [4].

The nongradient terms associated with ¥, ¢; and c3
remove the degeneracy of the three stationary solu-
tions (3) and (4). With any of these terms nonzero,
the two Bloch fronts propagate in opposite directions
at a speed proportional to the corresponding coeffi-
cient, »,c; or ¢3 [4]. In that case, a plot of the front
velocity, ¢, versus 7y yields the NIB bifurcation dia-
gram shown in Fig. 1.

To study front interactions we consider the symmet-
ric {(a = 0) and nearly gradient case, where front so-
lutions of (1) can be expanded around front solutions
of the gradient system (2). We introduce a small pa-
rameter € < | and assume that the constants v, «, ¢,
and c3 are all of order e. We also assume proximity
to the Ising-Bloch bifurcation point, u — 3y ~ /€. A
traveling domain solution of Eq. (1) is sought as

A(x,t) =By[x — x(T);+1]
+B_[x—x(T);—1] — Ao+ R(x,T), (5)

where x; and x; are the positions of the leading (right)
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and trailing (left) Bloch fronts, T = €t is a slow time,
B are given by (4), and R is a small correction term
of order €. The two polarities (o = +1) are nec-
essary to construct a domain bounded by the fronts.
The two types of Bloch fronts, B_ and B., make
the domain traveling instead of shrinking or expand-
ing. We assume that the domain is much wider than
the width of the fronts, k~!, or more accurately, that
expl —2k(x; —xp)] ~e < 1.

Our objective is to derive equations of motion for
the front positions, x; and x,. Using the anstaz (5)
in (1) and following the method of Refs. [16], we
find the following solvability condition for the right
(leading) front,

7 19B_ 2 7 aB*
X,-/’W dx+a/ o dx

—00
7 aB 4B* 3°B
* * a _
+il// 3X'B_dx+ic|/——1 dx

Ax  dx?

-0 — 00

o0 o>

oB* dB*

—iC3/ - |B_|2B_dx+/ —Ndx+c.c.
ax ax

—oo —o0

=0, (6)

where c.c. stands for the complex conjugate. A sim-
ilar condition is obtained for the left (trailing) front.
In Eq. (6) the dot over x; represents the derivative
with respect to the fast time ¢, and N is a nonlinear
interaction term,

N = (B +B})(Ao— By)(B_ — Ao)
+(B_+ B )(Ao— By ) (B~ — Ap)
+ (B- + B;)(Ag— B})(B_ — Ap),
where the arguments of By are as in (5). Analyt-

ical evaluation of the nonlinear interaction integral
in (6) leads to the following equations, with n =

v =3y [16],
%kon, =2a+mn[-v+cu+ (¢ —c3)y]
_ 8A86—2k(x,—x() + 4A0n2e-—k(x,-x{),
%kA().X"[ =2a+mp[—v+c3u+ (c) —c3)y]
+ BAe ™ H(xmT) _ gpgpleHx 0, (7

Combining Eqs. (7) gives a single equation of motion
for the distance between the two fronts, L = x; — xy,

kAoL = 3a — 12A3e 72 + 6Agn2e . (8)

The first term on the right hand side describes the ef-
fect of the broken symmetry between the two Bloch
fronts; the initial domain expands (shrinks) in time
when the leading front is faster (slower) than the trail-
ing front. The second term describes an attractive front
interaction generated by the real parts of the Bloch
front solutions. The last term, generated by the imag-
inary parts of the Bloch front solutions, describes a
longer range repulsive interaction. The repulsive inter-
action strengthens as 7 is decreased below the Ising-
Bloch bifurcation point, ¥, = u/3, and becomes dom-
inant at sufficiently small y values.

Notice that in Eq. (8) the nongradient terms asso-
ciated with v, ¢, and c¢3 have disappeared. To lead-
ing order the effect of these terms is to grant the two
Bloch fronts equal speeds. Therefore the distance be-
tween the fronts is not affected. This suggests that
the existence and stability of pulse solutions (mov-
ing domains) of Eq. (1) can be studied starting from
the gradient version (2). The latter can be written as
A, = —6H/8A*, where 8/8A* stands for the varia-
tional derivative, and the Lyapunov function (pseudo-
Hamiltonian) is

+oo
H= /'de,
H = Al — ulAP + FA|* = Sy [A® + (A%
—a(A+A"). (9)

This gradient representation implies relaxational dy-
namics toward a minimum of H. The part of H which
depends upon the separation distance L between the
Bloch fronts can be found following Ref. [17]. The
resulting effective pseudopotential of the interaction
for u = 3y is

4A2
U(L) = —2( —4y/2¢7 2
(L 3\/5( vae

2\/5 2 a
+ kz" e "L—EL) (10)

The extrema of U(L) coincide with stationary solu-
tions of (8).
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To find traveling pulse solutions of (1), which cor-
respond to stationary (fixed point) solutions of (8),
weset L=0in (8) or dU/dL =0in (10) and solve
the resulting quadratic equation for z = exp(—kL).
The solutions are

L=—k""In(n* £ \/n* + 440a) + 2k~ In24,.
(11)

In the symmetric case, & = 0, and for % > 0, there
is only one (finite) pulse solution. A linear stability
analysis indicates the solution is unstable. This result
complies with an earlier finding reported in Ref. [18].
For & > 0 the leading front is faster than the trailing
front. Again, only one pulse solution exists and a linear
stability analysis indicates the solution is unstable. The
same conclusion follows from a graph of Eq. (10):
the single pulse solution corresponds to a maximum of
the interaction pseudopotential U(L). For & < 0 no
pulse solutions exist if n* < 4A¢|a|. A saddle-node
pair of pulse solutions appears at ¥ = y,(a), where
Yp(@) solves (u — 3y,)? = 4,/ T 7p|a|. Graphs of
these solutions in the L — y plane are shown in Fig. 2.
The upper and lower branches represent stable and
unstable solutions, and pertain to a minimum and a
maximum of U( L), respectively. Also shown in Fig. 2
are results from direct numerical solutions of Eq. (1)
showing the stable pulse branch. The agreement for
small 77 is within 5%. The shape of the stable traveling
pulse is shown in Fig. 3a.

The conclusion that no stable pulses exist for & > 0
is aresult of the specific ansatz (5) for an “up” pulse as
shown Fig. 3a. From the symmetry A — —A of (1),a
symmetric stable “down” pulse exists for & > 0. The
shape of this pulse is displayed in Fig. 3b. A phase
diagram of all stable front and pulse solutions is shown
in Fig. 4a. Three main regions can be distinguished:
(I) The entire Ising regime, ¥ > y. = u/3, where
only a stable Ising front solution exists. In this region
domains shrink or expand but do not travel or form
pulses. (II) A region in the Bloch regime, Yp(a) <
¥ < 7., where a pair of stable counterpropagating
Bloch fronts exist. In this region domains travel but
do not form pulses; they either expand to infinity or
shrink and collapse. (III) The rest of the Bloch regime,
¥ < 7p(a), excluding the @ = 0 line (the y axis),
where stable traveling pulses exist in addition to the
pair of Bloch fronts. The y axis separates regions of
up and down pulses.
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Fig. 2. The distance, L, between the front and back of a pulse
solution for ¥ near the NIB bifurcation. The solid and dashed
lines represent the stable and unstable branches solutions from
Eq. (11). The crosses are data from direct numerical solution of
Eq. (1). Parameters: = 1, » = 0.01, @ = —0.001, ¢, = c3=0.
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Fig. 3. Pulse solutions to Eq. (1) near the NIB bifurcation. (a)
A stable “up” pulse, @ < 0. (b) A stable “down” pulse @ > 0.

This behavior is rather general. Shown in Fig. 4b is
an analogous phase diagram for the bistable FitzHugh-
Nagumo (FHN) model

u,=u—u3—v+um,
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Fig. 4. (a) A phase diagram in the plane of the forcing parameters,
a-v, showing the regions of stable front and pulse solutions to
the forced CGL equation. For y > vy, only Ising fronts exist and
there are no pulse solutions. For y < y. a pair of stable Bloch
fronts exist but they only form a stable traveling pulse solution
when y < yp. Parameters: u = 1.0, » = 0.05, ¢; = c3 = 0. (b)
The bistable FHN equation (12) shows the same type of phase
diagram in the e-ao parameter plane. Parameters: a; =2.0, 6 =0.

vy = €(u — ayv — ag) + Ovxy, (12)

where u and v are real fields and €, 8, a; and ag are real
constants. The parameters € and ao play a similar role
as vy and a, respectively, and the same three regions
(I), (II) and (III) appear in the e-ap plane.

The existence of an intermediate parameter region
where traveling domains collapse rather than con-
verge to stable pulses, has been observed in numerical
simulations of model equations [5,19]. It is also ex-
pected to be observed in a number of experimental
systems including catalytic reactions on platinum
surfaces [19], liquid crystals subjected to rotating

magnetic fields [9,10,20], oscillatory chemical re-
actions subjected to periodic forcing [21], and the
ferrocyanide-iodate-sulfite reaction {22].
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